

Matrix-chain Multiplication

Kuan-Yu Chen (陳冠宇)

2019/04/17 @ TR-310-1, NTUST

Review

- Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to subproblems
- We typically apply dynamic programming to *optimization problems*
 - Such problems can have many possible solutions
 - Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value

Matrix-chain Multiplication.

- The next example of dynamic programming is an algorithm that solves the problem of matrix-chain multiplication
 - We are given a sequence (chain) $\{A_1, A_2, \dots, A_n\}$ of n matrices to be multiplied
 - Fully Parenthesized
 - For example, if the chain of matrices is $\{A_1, A_2, A_3, A_4\}$, then we can fully parenthesize the product $A_1 A_2 A_3 A_4$ in five distinct ways
 - $(A_1(A_2(A_3A_4)))$
 - $(A_1((A_2A_3)A_4))$
 - $((A_1A_2)(A_3A_4))$
 - $((A_1(A_2A_3))A_4)$
 - $(((A_1A_2)A_3)A_4)$
 - Matrix multiplication is associative, and so all parenthesizations yield the same result

Matrix-chain Multiplication..

- Actually, how we parenthesize a chain of matrices can have a dramatic impact on the cost of evaluating the product
 - Given a chain $\{A_1, A_2, A_3\}$ of three matrices
 - Suppose that the dimensions of the matrices are 10×100 , 100×5 , and 5×50 , respectively
 - If we multiply according to the parenthesization $((A_1 A_2) A_3)$
 - $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$ multiplications
 - If we multiply according to the parenthesization $(A_1 (A_2 A_3))$
 - $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$ multiplications

```
MATRIX-MULTIPLY( $A, B$ )
1  if  $A.columns \neq B.rows$ 
2      error “incompatible dimensions”
3  else let  $C$  be a new  $A.rows \times B.columns$  matrix
4      for  $i = 1$  to  $A.rows$ 
5          for  $j = 1$  to  $B.columns$ 
6               $c_{ij} = 0$ 
7              for  $k = 1$  to  $A.columns$ 
8                   $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
9      return  $C$ 
```

Matrix-chain Multiplication...

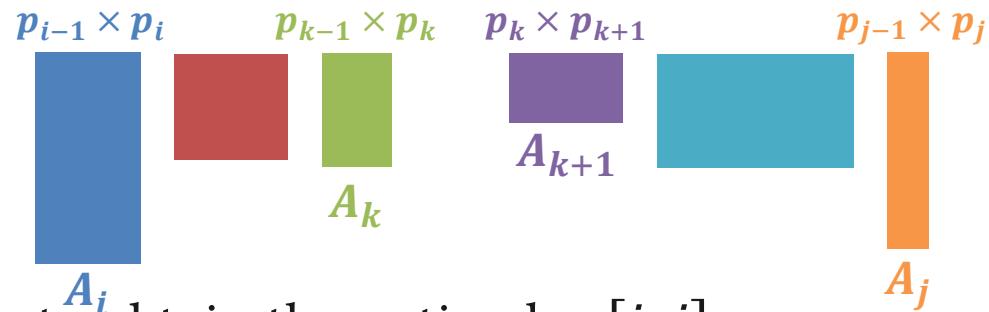
- We state the ***matrix-chain multiplication problem*** as follows: given a chain $\{A_1, A_2, \dots, A_n\}$ of n matrices, where for $i = 1, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $\{A_1, A_2, \dots, A_n\}$ in a way that minimizes the number of scalar multiplications
 - Note that in the matrix-chain multiplication problem, we are not actually multiplying matrices
 - Our goal is only to determine an order for multiplying matrices that has the **lowest cost**

DP for Matrix-chain Multiplication.

- Let us adopt the notation $A_{i \dots j}$, where $i \leq j$, for the matrix that results from evaluating the product $A_{i \dots j} = A_i A_{i+1} \cdots A_j$

- Let $m[i, j]$ be the minimum number of scalar multiplications needed to compute the matrix $A_{i \dots j}$
 - It is easy to understand that $m[i, i] = 0$

- Only a matrix A_i
 - No scalar multiplications are necessary to compute the product



- On the other hand, in order to obtain the optimal $m[i, j]$, we should split $A_{i \dots j}$ between A_k and A_{k+1}

$$m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$$

- A general form is

$$m[i, j] = \begin{cases} 0, & \text{if } i = j \\ \min_{i \leq k < j} \{m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j\}, & \text{if } i < j \end{cases}$$

DP for Matrix-chain Multiplication..

- For the original problem, we can split the whole product between A_k and A_{k+1} for some integer k

$$A_{1\dots n} = A_1 A_2 \cdots A_n = A_1 \cdots A_k A_{k+1} \cdots A_n = A_{1\dots k} A_{k+1\dots n}$$

- The lowest cost way to compute $A_{1\dots n}$ would thus be $m[1, n]$

$$m[1, n] = \begin{cases} 0, & \text{if } n = 1 \\ \min_{1 \leq k < n} \{m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j\}, & \text{otherwise} \end{cases}$$

DP for Matrix-chain Multiplication...

- Let's consider a bottom-up approach Matrix-Chain-Order
 - Since the matrix A_i has dimensions $p_{i-1} \times p_i$
 - The input is thus a sequence $p = \{p_0, p_1, \dots, p_n\}$
 - $p.length = n + 1$
 - An auxiliary table $m[1 \dots n, 1 \dots n]$ is used to store the $m[i, j]$ costs
 - An auxiliary table $s[1 \dots n - 1, 2 \dots n]$ is used to store which index of k achieved the optimal cost in computing $m[i, j]$

```
MATRIX-CHAIN-ORDER( $p$ )
1   $n = p.length - 1$ 
2  let  $m[1 \dots n, 1 \dots n]$  and  $s[1 \dots n - 1, 2 \dots n]$  be new tables
3  for  $i = 1$  to  $n$ 
4     $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$            //  $l$  is the chain length
6    for  $i = 1$  to  $n - l + 1$ 
7       $j = i + l - 1$ 
8       $m[i, j] = \infty$ 
9      for  $k = i$  to  $j - 1$ 
10         $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11        if  $q < m[i, j]$ 
12           $m[i, j] = q$ 
13           $s[i, j] = k$ 
14  return  $m$  and  $s$ 
```

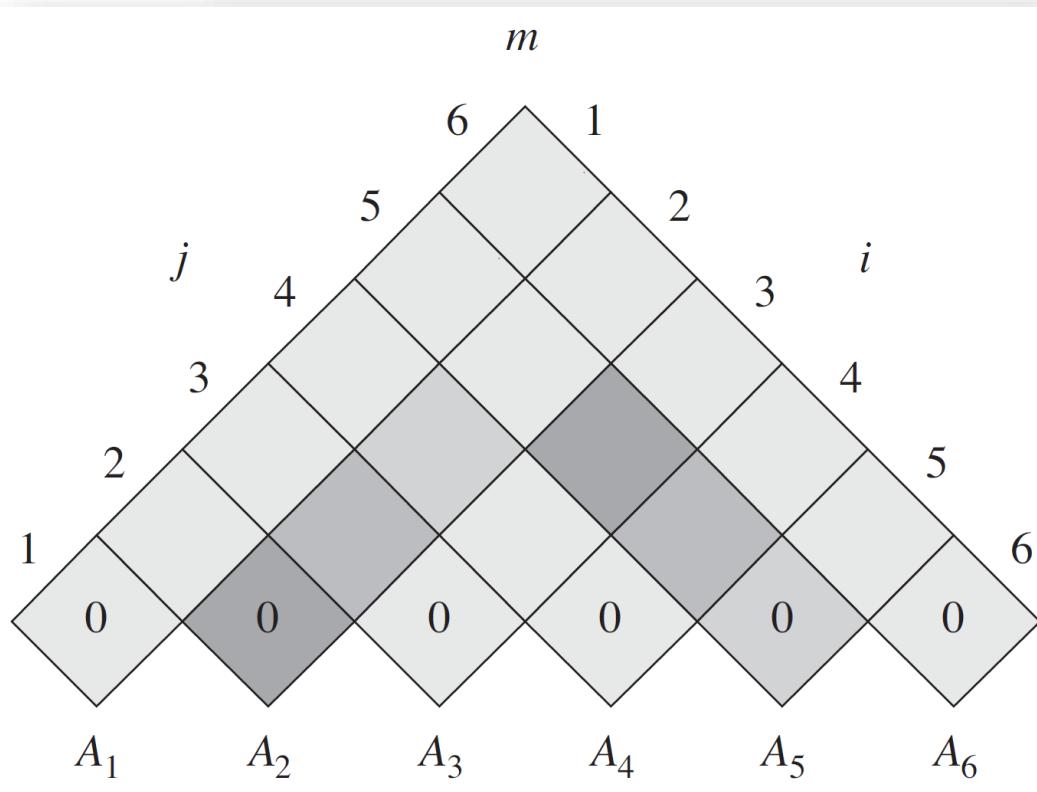
DP for Matrix-chain Multiplication...

MATRIX-CHAIN-ORDER(p)

```
1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4       $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$            //  $l$  is the chain length
6      for  $i = 1$  to  $n - l + 1$ 
7           $j = i + l - 1$ 
8           $m[i, j] = \infty$ 
9          for  $k = i$  to  $j - 1$ 
10              $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11             if  $q < m[i, j]$ 
12                  $m[i, j] = q$ 
13                  $s[i, j] = k$ 
14  return  $m$  and  $s$ 
```

Example.

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25



MATRIX-CHAIN-ORDER(p)

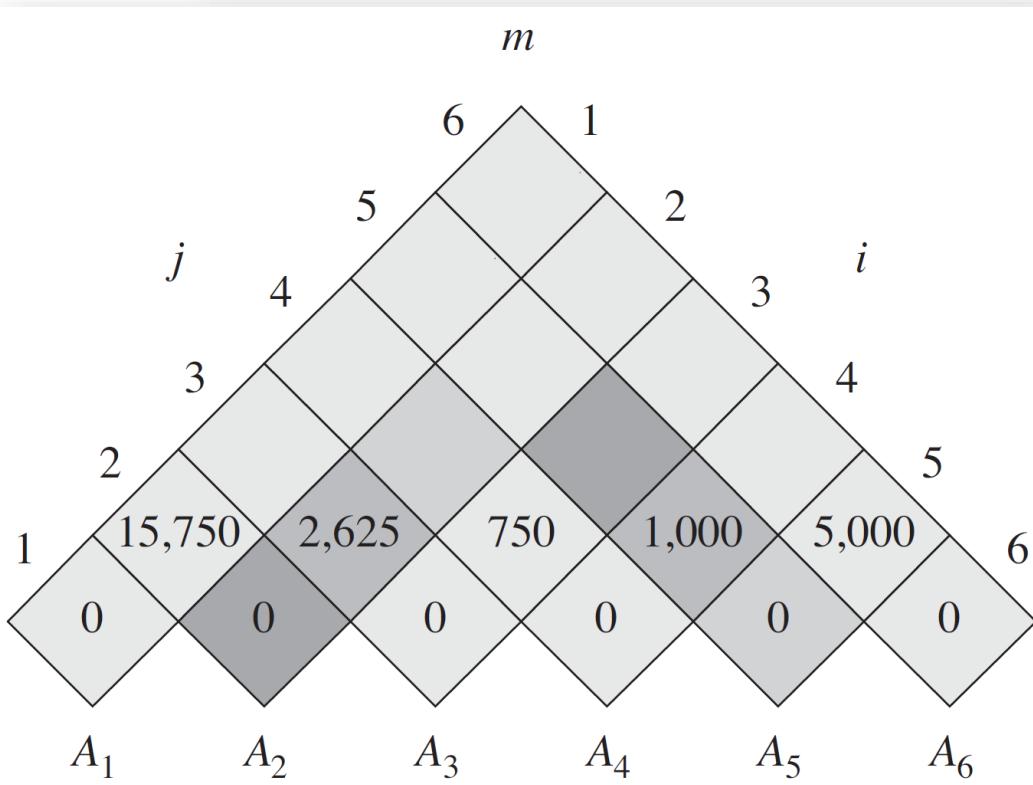
```

1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4       $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$  //  $l$  is the chain length
6      for  $i = 1$  to  $n - l + 1$ 
7           $j = i + l - 1$ 
8           $m[i, j] = \infty$ 
9          for  $k = i$  to  $j - 1$ 
10          $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11         if  $q < m[i, j]$ 
12              $m[i, j] = q$ 
13              $s[i, j] = k$ 
14  return  $m$  and  $s$ 

```

Example..

matrix dimension	A_1	A_2	A_3	A_4	A_5	A_6
	30×35	35×15	15×5	5×10	10×20	20×25



MATRIX-CHAIN-ORDER(p)

```

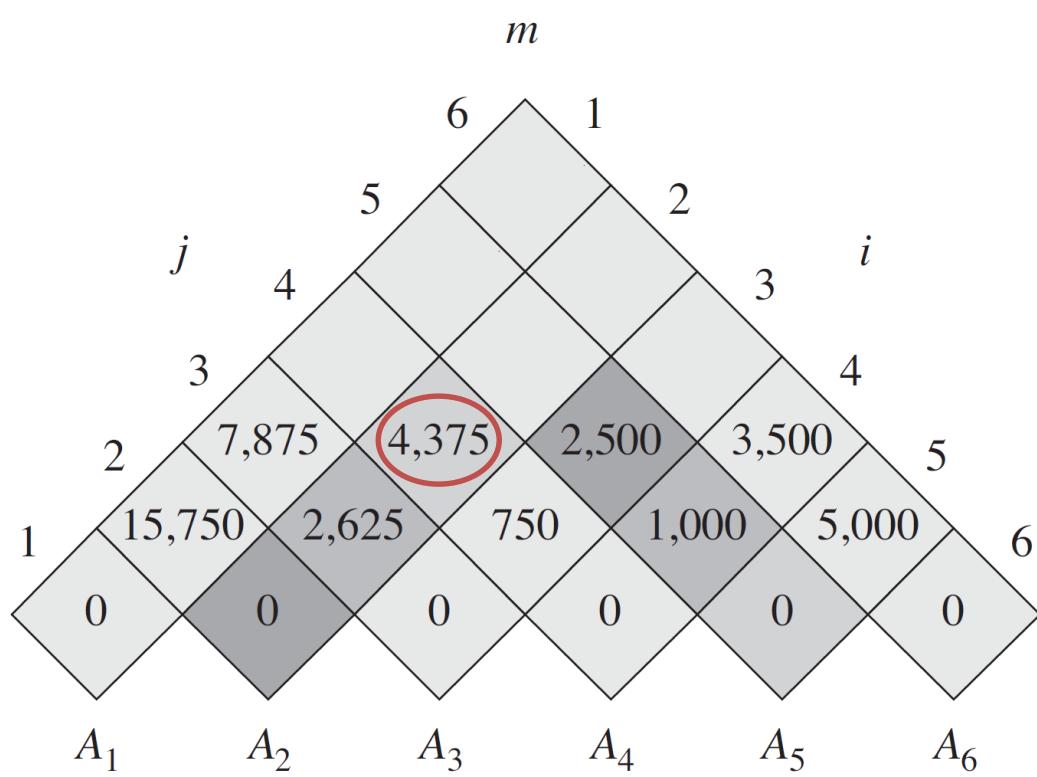
1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4       $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$            //  $l$  is the chain length
6      for  $i = 1$  to  $n - l + 1$ 
7           $j = i + l - 1$ 
8           $m[i, j] = \infty$ 
9          for  $k = i$  to  $j - 1$ 
10              $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11             if  $q < m[i, j]$ 
12                  $m[i, j] = q$ 
13                  $s[i, j] = k$ 
14
return  $m$  and  $s$ 

```

Example...

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

$$m[2,4] = \begin{cases} m[2,3] + m[4,4] + 35 \times 5 \times 10 = 2625 + 0 + 1750 = 4375 \\ m[2,2] + m[3,4] + 35 \times 15 \times 10 = 0 + 750 + 5250 = 6000 \end{cases}$$



MATRIX-CHAIN-ORDER(p)

```

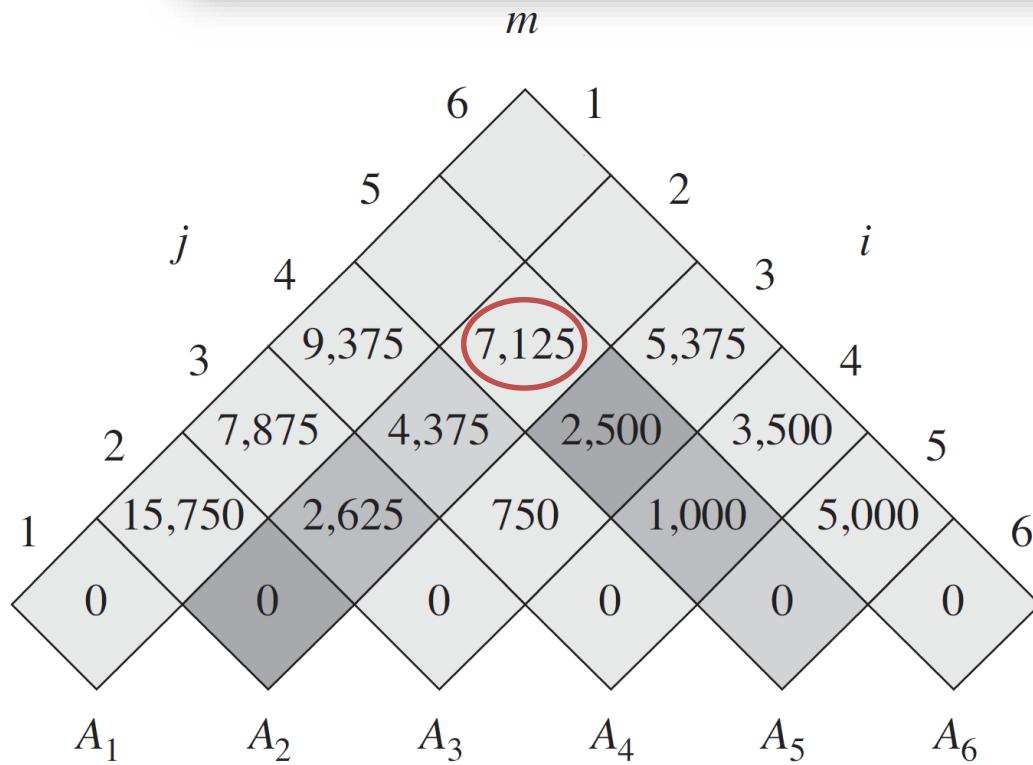
1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4     $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$           //  $l$  is the chain length
6    for  $i = 1$  to  $n - l + 1$ 
7       $j = i + l - 1$ 
8       $m[i, j] = \infty$ 
9      for  $k = i$  to  $j - 1$ 
10      $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11     if  $q < m[i, j]$ 
12        $m[i, j] = q$ 
13        $s[i, j] = k$ 
14
return  $m$  and  $s$ 

```

Example....

matrix dimension	A_1	A_2	A_3	A_4	A_5	A_6
	30×35	35×15	15×5	5×10	10×20	20×25

$$m[2, 5] = \min \begin{cases} m[2, 2] + m[3, 5] + p_1 p_2 p_5 = 0 + 2500 + 35 \cdot 15 \cdot 20 = 13,000, \\ m[2, 3] + m[4, 5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \\ m[2, 4] + m[5, 5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 = 11,375 \end{cases}$$



MATRIX-CHAIN-ORDER(p)

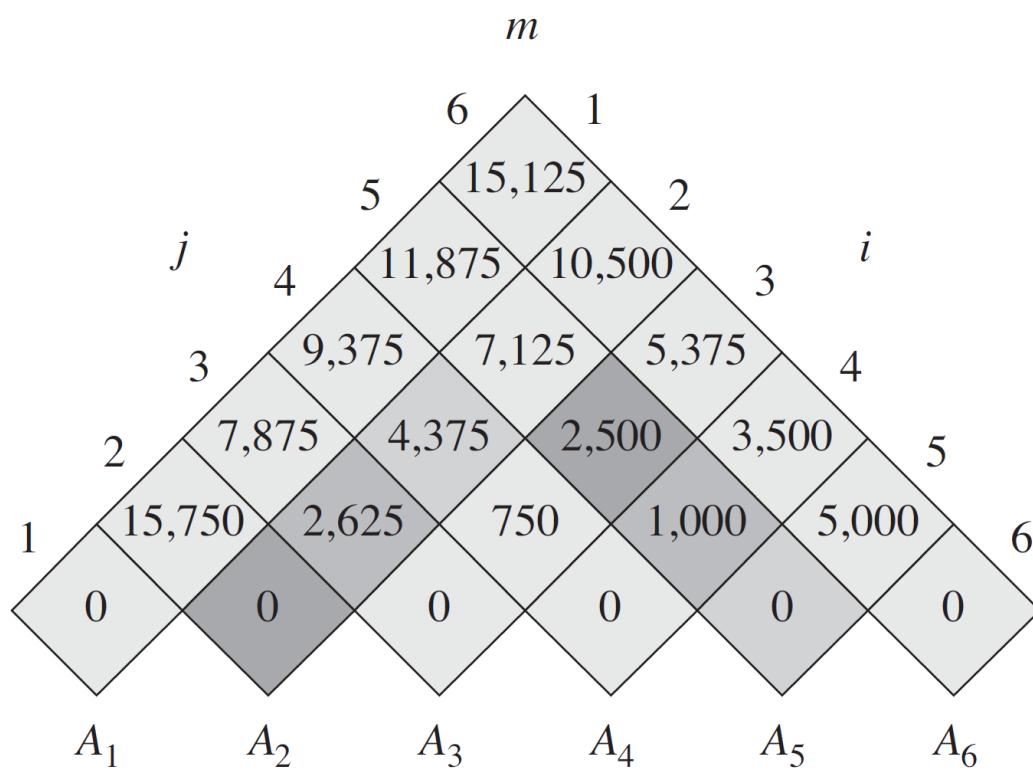
```

1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4     $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$  //  $l$  is the chain length
6    for  $i = 1$  to  $n - l + 1$ 
7       $j = i + l - 1$ 
8       $m[i, j] = \infty$ 
9      for  $k = i$  to  $j - 1$ 
10         $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11        if  $q < m[i, j]$ 
12           $m[i, j] = q$ 
13           $s[i, j] = k$ 
14
return  $m$  and  $s$ 

```

Example.....

matrix dimension	A_1	A_2	A_3	A_4	A_5	A_6
30×35	35×15	15×5	5×10	10×20	20×25	



MATRIX-CHAIN-ORDER(p)

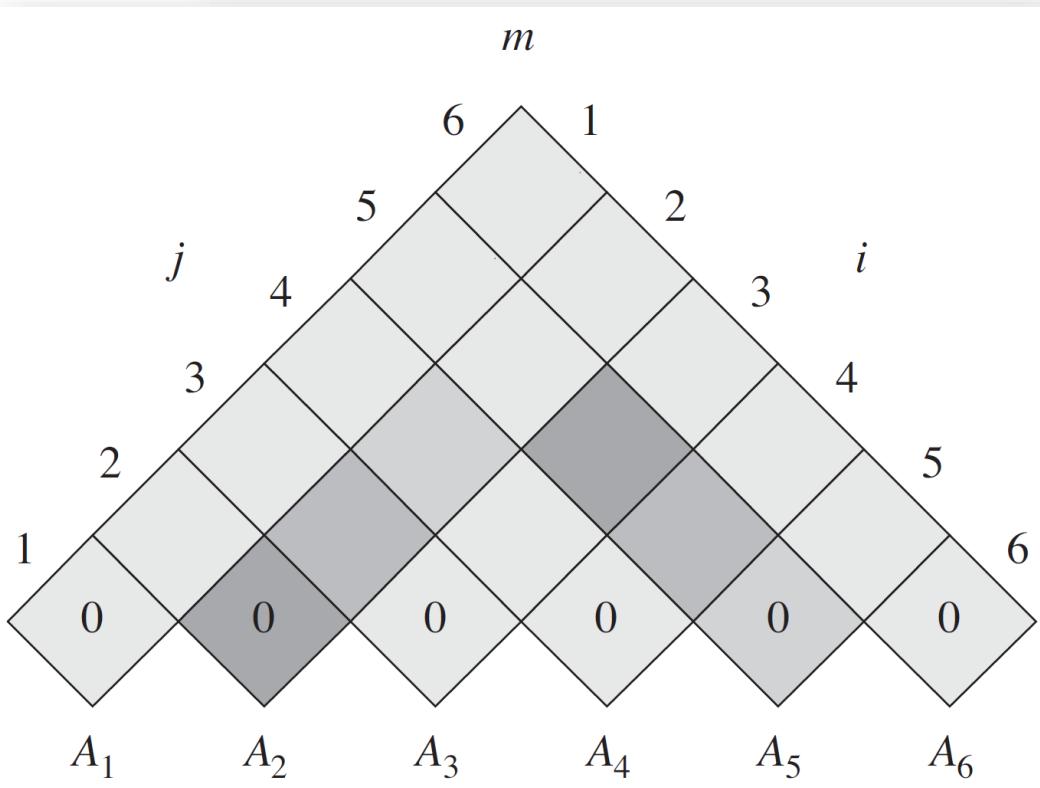
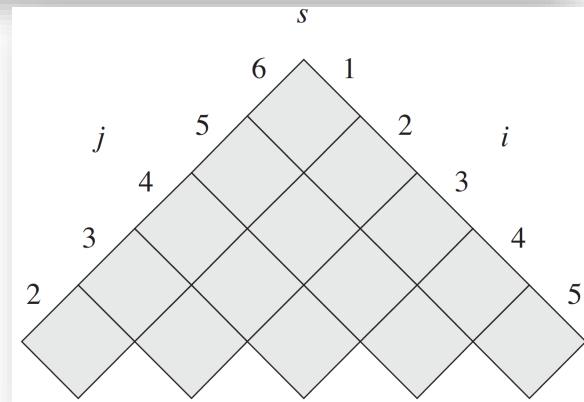
```

1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4     $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$           //  $l$  is the chain length
6    for  $i = 1$  to  $n - l + 1$ 
7       $j = i + l - 1$ 
8       $m[i, j] = \infty$ 
9      for  $k = i$  to  $j - 1$ 
10      $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11     if  $q < m[i, j]$ 
12        $m[i, j] = q$ 
13        $s[i, j] = k$ 
14
return  $m$  and  $s$ 

```

Example.....

matrix dimension	A_1	A_2	A_3	A_4	A_5	A_6
30×35	35×15	15×5	5×10	10×20	20×25	



MATRIX-CHAIN-ORDER(p)

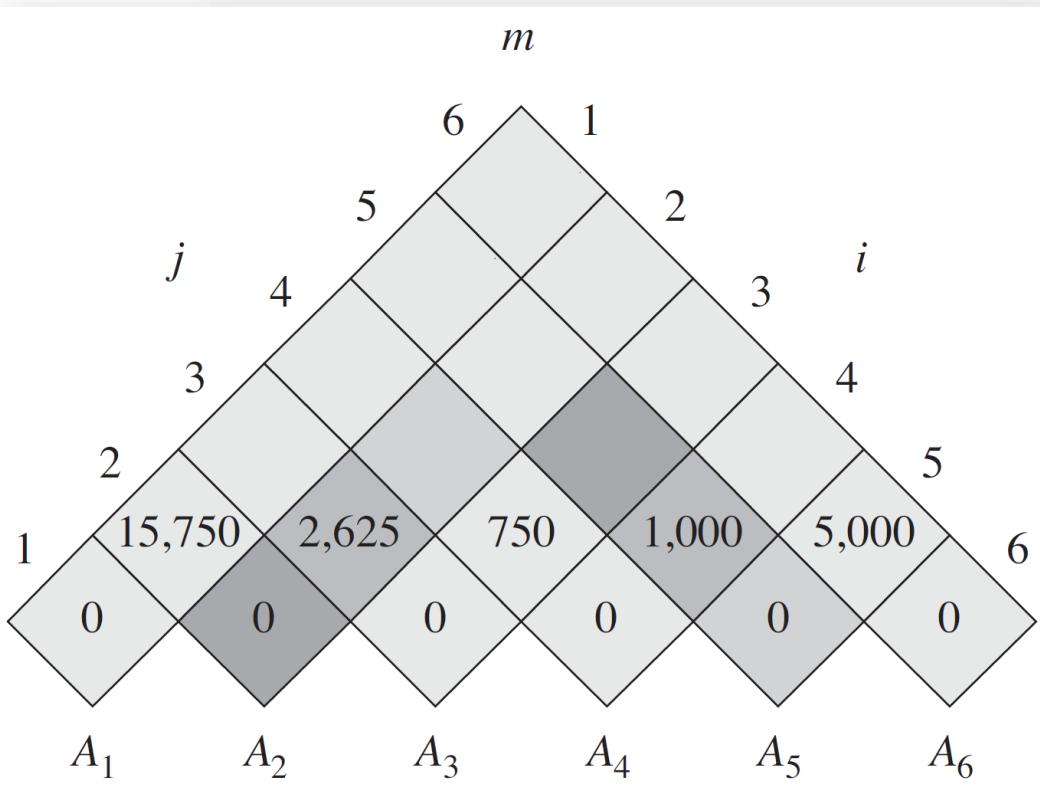
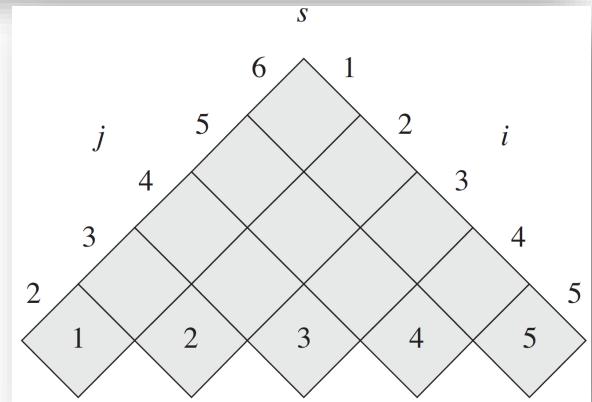
```

1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4       $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$            //  $l$  is the chain length
6      for  $i = 1$  to  $n - l + 1$ 
7           $j = i + l - 1$ 
8           $m[i, j] = \infty$ 
9          for  $k = i$  to  $j - 1$ 
10              $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11             if  $q < m[i, j]$ 
12                  $m[i, j] = q$ 
13                  $s[i, j] = k$ 
14  return  $m$  and  $s$ 

```

Example.....

matrix dimension	A_1	A_2	A_3	A_4	A_5	A_6
	30×35	35×15	15×5	5×10	10×20	20×25



MATRIX-CHAIN-ORDER(p)

```

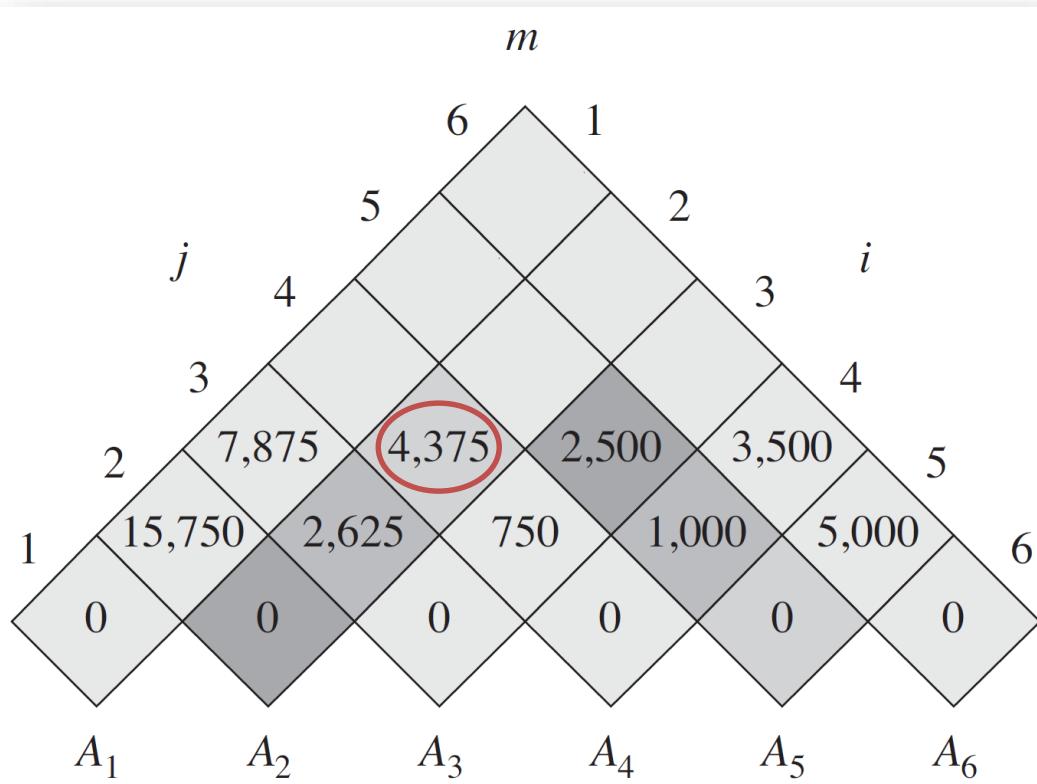
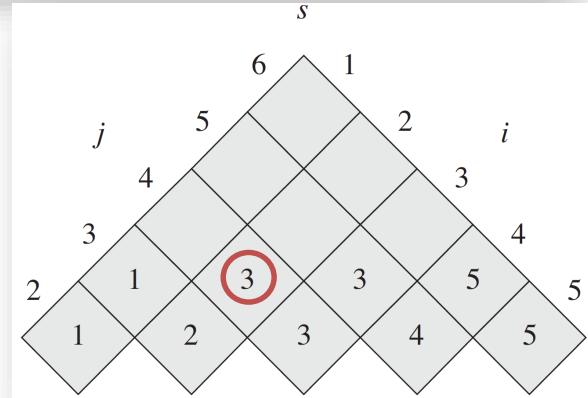
1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4     $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$            //  $l$  is the chain length
6    for  $i = 1$  to  $n - l + 1$ 
7       $j = i + l - 1$ 
8       $m[i, j] = \infty$ 
9      for  $k = i$  to  $j - 1$ 
10         $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11        if  $q < m[i, j]$ 
12           $m[i, j] = q$ 
13           $s[i, j] = k$ 
14  return  $m$  and  $s$ 

```

Example.....

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

$$m[2,4] = \begin{cases} m[2,3] + m[4,4] + 35 \times 5 \times 10 = 4375 \\ m[2,2] + m[3,4] + 35 \times 15 \times 10 = 6000 \end{cases}$$



MATRIX-CHAIN-ORDER(p)

```

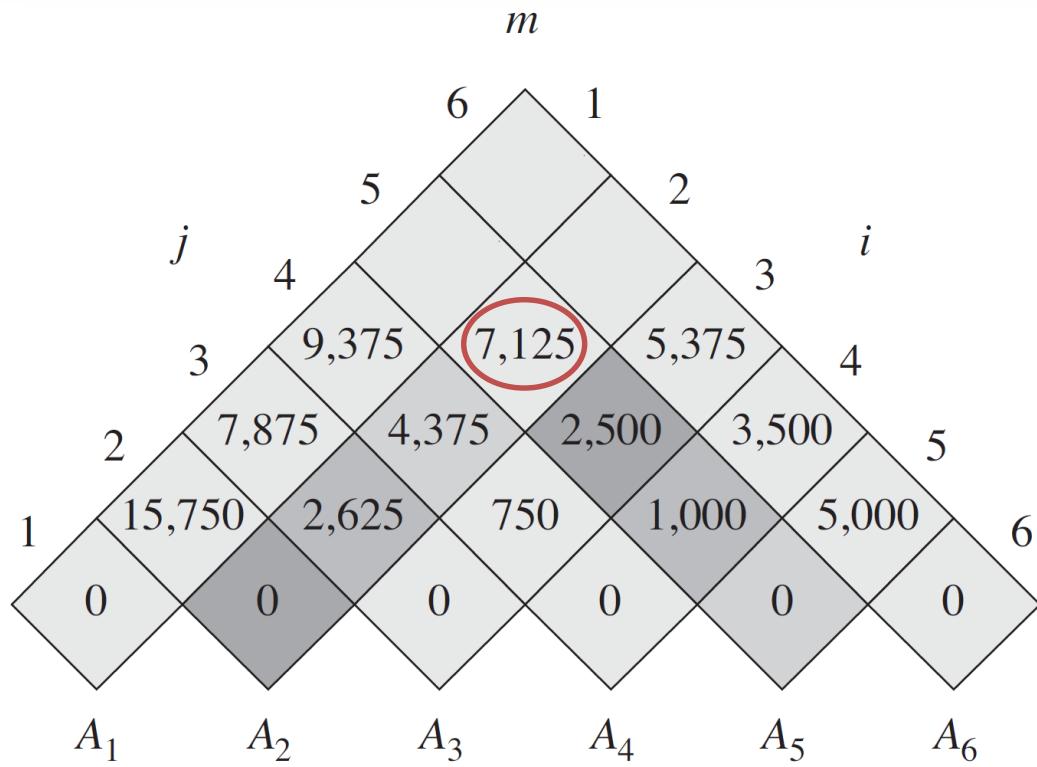
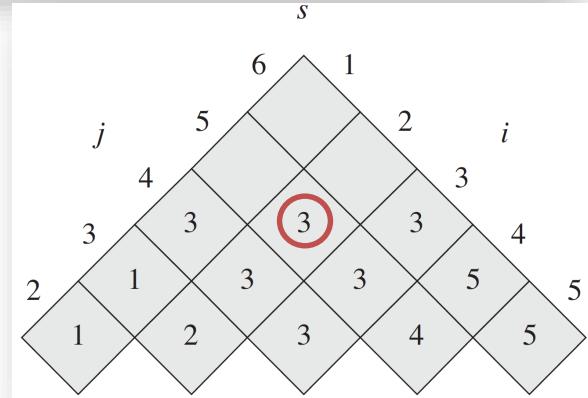
1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4     $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$  //  $l$  is the chain length
6    for  $i = 1$  to  $n - l + 1$ 
7       $j = i + l - 1$ 
8       $m[i, j] = \infty$ 
9      for  $k = i$  to  $j - 1$ 
10         $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11        if  $q < m[i, j]$ 
12           $m[i, j] = q$ 
13           $s[i, j] = k$ 
14  return  $m$  and  $s$ 

```

Example.....

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

$$m[2, 5] = \min \begin{cases} m[2, 2] + m[3, 5] + p_1 p_2 p_5 &= 0 + 2500 + 35 \cdot 15 \cdot 20 = 13,000, \\ m[2, 3] + m[4, 5] + p_1 p_3 p_5 &= 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \\ m[2, 4] + m[5, 5] + p_1 p_4 p_5 &= 4375 + 0 + 35 \cdot 10 \cdot 20 = 11,375 \end{cases}$$



MATRIX-CHAIN-ORDER(p)

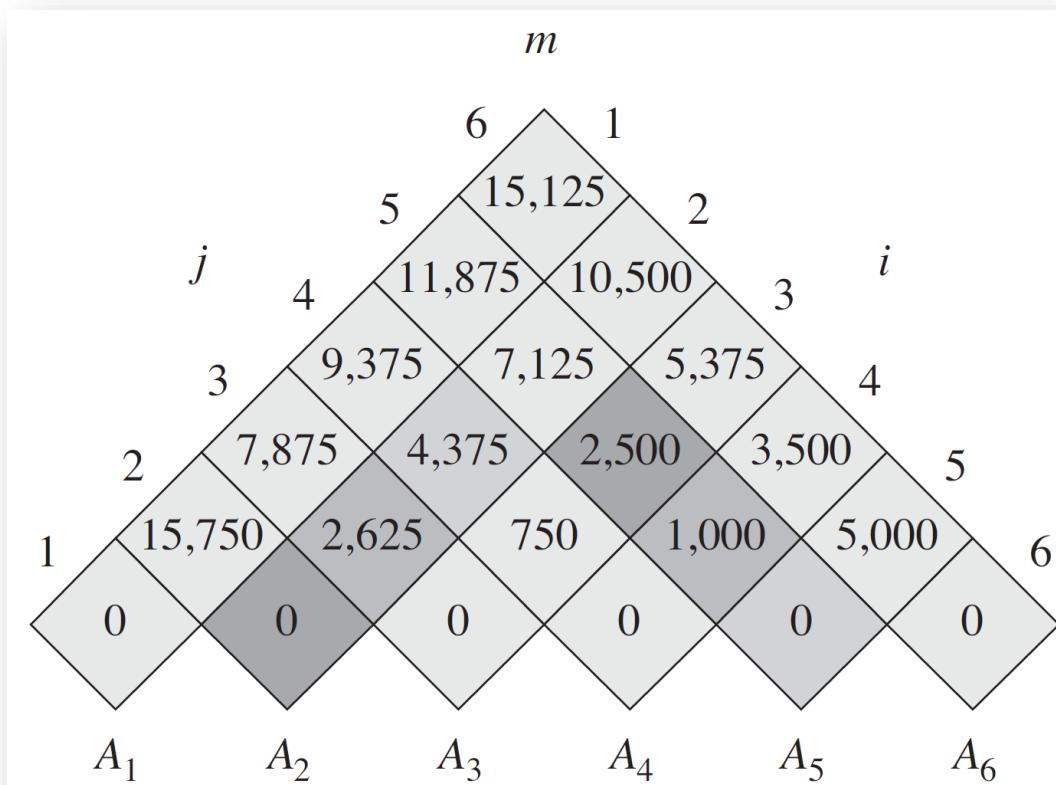
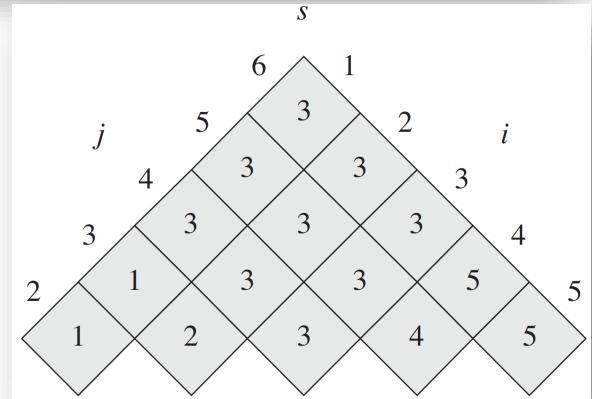
```

1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4     $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$  //  $l$  is the chain length
6    for  $i = 1$  to  $n - l + 1$ 
7       $j = i + l - 1$ 
8       $m[i, j] = \infty$ 
9      for  $k = i$  to  $j - 1$ 
10         $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11        if  $q < m[i, j]$ 
12           $m[i, j] = q$ 
13           $s[i, j] = k$ 
14  return  $m$  and  $s$ 

```

Example.....

matrix dimension	A_1	A_2	A_3	A_4	A_5	A_6
30×35	35×15	15×5	5×10	10×20	20×25	



MATRIX-CHAIN-ORDER(p)

```

1   $n = p.length - 1$ 
2  let  $m[1..n, 1..n]$  and  $s[1..n - 1, 2..n]$  be new tables
3  for  $i = 1$  to  $n$ 
4     $m[i, i] = 0$ 
5  for  $l = 2$  to  $n$  //  $l$  is the chain length
6    for  $i = 1$  to  $n - l + 1$ 
7       $j = i + l - 1$ 
8       $m[i, j] = \infty$ 
9      for  $k = i$  to  $j - 1$ 
10         $q = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j$ 
11        if  $q < m[i, j]$ 
12           $m[i, j] = q$ 
13           $s[i, j] = k$ 
14
return  $m$  and  $s$ 

```

DP for Matrix-chain Multiplication....

- Although Matrix-Chain-Order determines the optimal number of scalar multiplications needed to compute a matrix-chain product, it does not directly show how to multiply the matrices
- The table $s[1 \dots n - 1, 2 \dots n]$ gives us the information
 - Each entry $s[i, j]$ records a value of k such that an optimal parenthesization of $A_i A_{i+1} \dots A_j$ splits the product between A_k and A_{k+1}

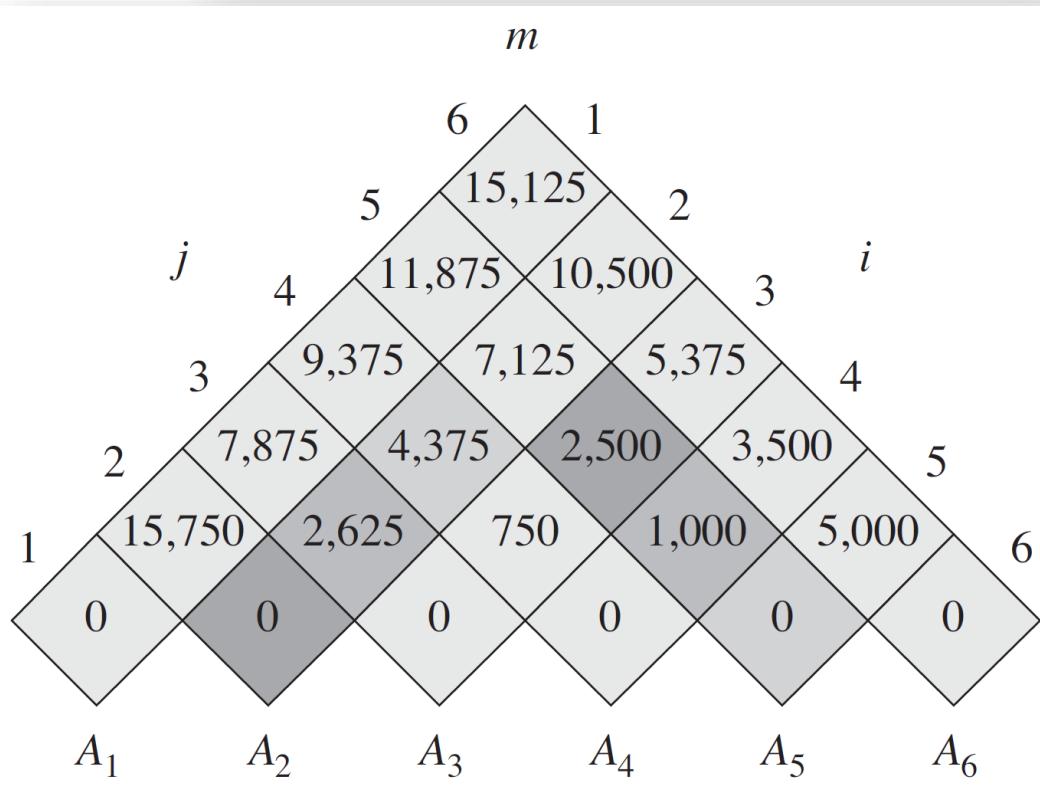
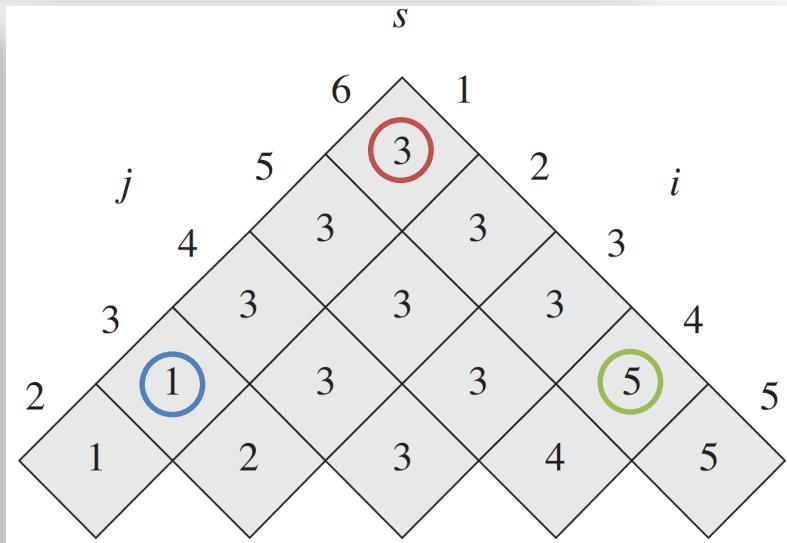
- $s[i, j] = k$

```
PRINT-OPTIMAL-PARENTS( $s, i, j$ )  
1  if  $i == j$   
2      print " $A$ " $_i$   
3  else print "("  
4      PRINT-OPTIMAL-PARENTS( $s, i, s[i, j]$ )  
5      PRINT-OPTIMAL-PARENTS( $s, s[i, j] + 1, j$ )  
6      print ")"
```

Example

- The optimal parenthesization is $\underline{\underline{(A_1(A_2A_3))}} \underline{\underline{((A_4A_5)A_6))}}$

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25



Questions?

kychen@mail.ntust.edu.tw